The transcription factor Foxd3 induces spinal cord ischemia-reperfusion injury by potentiating microRNA-214-dependent inhibition of Kcnk2

转录因子 Foxd3 通过增强 microRNA-214 依赖的 Kcnk2 抑制来诱导脊髓缺血再灌注损伤

阅读:6
作者:Ran Li, Kunchi Zhao, Qing Ruan, Chunyang Meng, Fei Yin

Abstract

Spinal cord injury after surgical repair of the thoracic or thoracoabdominal aorta is a devastating complication that is associated with pathological changes, including inflammation, edema, and nerve cell damage. Recently, microRNA (miRNA)-modulated control of spinal cord injury has been actively investigated. This study aims to clarify the regulatory effect of miR-214-mediated inhibition of Kcnk2 following spinal cord ischemia-reperfusion injury (SCII) and the possible underlying mechanisms. SCII was induced in rats by occluding the aortic arch followed by reperfusion. Gain-of-function and loss-of-function experiments were conducted to explore the modulatory effects of Foxd3, miR-214 and Kcnk2 on PC12 cells under hypoxia/reoxygenation (H/R) conditions. MiR-214 and Kcnk2 were poorly expressed, while Foxd3 was highly expressed in the rat spinal cord tissues and H/R-treated PC12 cells. Kcnk2 overexpression enhanced the viability and inhibited the apoptosis of the H/R-treated PC12 cells. Notably, Foxd3 activated miR-214, and miR-214 targeted Kcnk2. In addition, upregulation of Kcnk2 or knockdown of Foxd3 promoted the cell viability and reduced the apoptosis of the H/R-treated PC12 cells. Overall, our study identified a novel mechanism of Foxd3/miR-214/Kcnk2 involving SCII, suggesting that either Foxd3 or miR-214 may be a novel target for the treatment of SCII.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。