Hydrogel platform with tunable stiffness based on magnetic nanoparticles cross-linked GelMA for cartilage regeneration and its intrinsic biomechanism

基于磁性纳米粒子交联 GelMA 的可调刚度水凝胶平台用于软骨再生及其内在生物机制

阅读:6
作者:Chenchen Zhou, Chunli Wang, Kang Xu, Zhixing Niu, Shujuan Zou, Demao Zhang, Zhiyong Qian, Jinfeng Liao, Jing Xie

Abstract

Cartilage injury affects numerous individuals, but the efficient repair of damaged cartilage is still a problem in clinic. Hydrogel is a potent scaffold candidate for tissue regeneration, but it remains a big challenge to improve its mechanical property and figure out the interaction of chondrocytes and stiffness. Herein, a novel hybrid hydrogel with tunable stiffness was fabricated based on methacrylated gelatin (GelMA) and iron oxide nanoparticles (Fe2O3) through chemical bonding. The stiffness of Fe2O3/GelMA hybrid hydrogel was controlled by adjusting the concentration of magnetic nanoparticles. The hydrogel platform with tunable stiffness modulated its cellular properties including cell morphology, microfilaments and Young's modulus of chondrocytes. Interestingly, Fe2O3/GelMA hybrid hydrogel promoted oxidative phosphorylation of mitochondria and facilitated catabolism of lipids in chondrocytes. As a result, more ATP and metabolic materials generated for cellular physiological activities and organelle component replacements in hybrid hydrogel group compared to pure GelMA hydrogel. Furthermore, implantation of Fe2O3/GelMA hybrid hydrogel in the cartilage defect rat model verified its remodeling potential. This study provides a deep understanding of the bio-mechanism of Fe2O3/GelMA hybrid hydrogel interaction with chondrocytes and indicates the hydrogel platform for further application in tissue engineering.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。