GRK2 enforces androgen receptor dependence in the prostate and prostate tumors

GRK2 增强前列腺和前列腺肿瘤的雄激素受体依赖性

阅读:10
作者:Adam J Adler, Payal Mittal, Adam T Hagymasi, Antoine Menoret, Chen Shen, Federica Agliano, Kyle T Wright, James J Grady, Chia-Ling Kuo, Enrique Ballesteros, Kevin P Claffey, Anthony T Vella

Abstract

Metastatic tumors that have become resistant to androgen deprivation therapy represent the major challenge in treating prostate cancer. Although these recurrent tumors typically remain dependent on the androgen receptor (AR), non-AR-driven tumors that also emerge are particularly deadly and becoming more prevalent. Here, we present a new genetically engineered mouse model for non-AR-driven prostate cancer that centers on a negative regulator of G protein-coupled receptors that is downregulated in aggressive human prostate tumors. Thus, prostate-specific expression of a dominant-negative G protein-coupled receptor kinase 2 (GRK2-DN) transgene diminishes AR and AR target gene expression in the prostate, and confers resistance to castration-induced involution. Further, the GRK2-DN transgene dramatically accelerates oncogene-initiated prostate tumorigenesis by increasing primary tumor size, potentiating visceral organ metastasis, suppressing AR, and inducing neuroendocrine marker mRNAs. In summary, GRK2 enforces AR-dependence in the prostate, and the loss of GRK2 function in prostate tumors accelerates disease progression toward the deadliest stage.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。