Luciferase-Based Determination of ATP/NAD(H) Pools in a Marine (Environmental) Bacterium

基于荧光素酶测定海洋(环境)细菌中的 ATP/NAD(H) 池

阅读:6
作者:Daniel Wünsch, Sabine Scheve, Arne Weiten, Kristin Kalvelage, Ralf Rabus

Abstract

In all living organisms, adenosine triphosphate (ATP) and NAD(H) represent universal molecular currencies for energy and redox state, respectively, and are thus widely applicable molecular proxies for an organism's viability and activity. To this end, corresponding luciferase-based assays in combination with a microplate reader were established with the marine model bacterium Phaeobacter inhibens DSM 17395 (Escherichia coli K12 served as reference). Grey multiwell plates best balanced sensitivity and crosstalk, and optimal incubation times were 5 min and 30 min for the ATP and NAD(H) assay, respectively, together allowing limits of detection of 0.042, 0.470 and 0.710 nM for ATP, NAD+, and NADH, respectively. Quenching of bacterial cell samples involved Tris-EDTA-DTAB and bicarbonate base-DTAB for ATP and NAD(H) assays, respectively. The ATP and NAD(H) yields determined for P. inhibens DSM 17395 at ¼ ODmax were found to reside well within the range previously reported for E. coli and other bacteria, e.g., 3.28 µmol ATP (g cellsdry)-1. Thus, the here described methods for luciferase-based determination of ATP/NAD(H) pools open a promising approach to investigate energy and redox states in marine (environmental) bacteria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。