Inhibition of DACH1 activity by short hairpin RNA represses cell proliferation and tumor invasion in pancreatic cancer

短发夹 RNA 抑制 DACH1 活性可抑制胰腺癌细胞增殖和肿瘤侵袭

阅读:5
作者:Xiao-Na Bu, Chan Qiu, Chuan Wang, Zheng Jiang

Abstract

Cancer of the pancreas is one of the most lethal diseases worldwide. Better understanding of the molecular mechanisms involved in tumorigenesis is of great consequence to elevate the survival rate. Human Dachshund homologue 1 (DACH1) plays a controversial role in human malignancy progression with its expression being altered in a variety of cancers. Nevertheless, its functional roles and molecular mechanisms in pancreatic cancer remain unknown. The expression of DACH1 in pancreatic cancer cell lines and the ductal epithelial cells were evaluated both at mRNA and protein levels. Three pairs of siRNA targeting the DACH1 gene were designed and synthesized, double-stranded short hairpin RNA (shRNA) were annealed and inserted into pGenesil-1 vector, which was confirmed by enzymatic digestion and sequencing analyses. The successfully constructed recombinant plasmids were transfected into Capan-1 cells and our data indicated that knockdown of DACH1 gene expression showed strong correlation with repressing tumorigenesis. The proliferation of Capan-1 cells was significantly repressed as evaluated by CCK-8 and colony formation assays. Flow cymetry revealed that cell apoptosis was promoted in interference plasmid group compared with control groups (P<0.05), whereas cell cycle had no significant differences among the groups (P>0.05). Transwell assay validated the abilities of migration and invasion as being significantly reduced in pshRNA-DACH1 group. Furthermore, our study suggested that DACH1 expression regulates the pancreatic cancer cell apoptosis through interacting with Bcl-2 signaling axis, whereas it controls cell migration and invasion via epithelial-mesenchymal transition (EMT) process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。