Donor glucose-6-phosphate dehydrogenase deficiency decreases blood quality for transfusion

供体葡萄糖-6-磷酸脱氢酶缺乏导致输血血液质量下降

阅读:4
作者:Richard O Francis, Angelo D'Alessandro, Andrew Eisenberger, Mark Soffing, Randy Yeh, Esther Coronel, Arif Sheikh, Francesca Rapido, Francesca La Carpia, Julie A Reisz, Sarah Gehrke, Travis Nemkov, Tiffany Thomas, Joseph Schwartz, Chaitanya Divgi, Debra Kessler, Beth H Shaz, Yelena Ginzburg, James C

Abstract

BACKGROUNDGlucose-6-phosphate dehydrogenase (G6PD) deficiency decreases the ability of red blood cells (RBCs) to withstand oxidative stress. Refrigerated storage of RBCs induces oxidative stress. We hypothesized that G6PD-deficient donor RBCs would have inferior storage quality for transfusion as compared with G6PD-normal RBCs.METHODSMale volunteers were screened for G6PD deficiency; 27 control and 10 G6PD-deficient volunteers each donated 1 RBC unit. After 42 days of refrigerated storage, autologous 51-chromium 24-hour posttransfusion RBC recovery (PTR) studies were performed. Metabolomics analyses of these RBC units were also performed.RESULTSThe mean 24-hour PTR for G6PD-deficient subjects was 78.5% ± 8.4% (mean ± SD), which was significantly lower than that for G6PD-normal RBCs (85.3% ± 3.2%; P = 0.0009). None of the G6PD-normal volunteers (0/27) and 3 G6PD-deficient volunteers (3/10) had PTR results below 75%, a key FDA acceptability criterion for stored donor RBCs. As expected, fresh G6PD-deficient RBCs demonstrated defects in the oxidative phase of the pentose phosphate pathway. During refrigerated storage, G6PD-deficient RBCs demonstrated increased glycolysis, impaired glutathione homeostasis, and increased purine oxidation, as compared with G6PD-normal RBCs. In addition, there were significant correlations between PTR and specific metabolites in these pathways.CONCLUSIONBased on current FDA criteria, RBCs from G6PD-deficient donors would not meet the requirements for storage quality. Metabolomics assessment identified markers of PTR and G6PD deficiency (e.g., pyruvate/lactate ratios), along with potential compensatory pathways that could be leveraged to ameliorate the metabolic needs of G6PD-deficient RBCs.TRIAL REGISTRATIONClinicalTrials.gov NCT04081272.FUNDINGThe Harold Amos Medical Faculty Development Program, Robert Wood Johnson Foundation grant 71590, the National Blood Foundation, NIH grant UL1 TR000040, the Webb-Waring Early Career Award 2017 by the Boettcher Foundation, and National Heart, Lung, and Blood Institute grants R01HL14644 and R01HL148151.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。