CRISPR screens reveal convergent targeting strategies against evolutionarily distinct chemoresistance in cancer

CRISPR 筛选揭示了针对癌症进化上不同的化学耐药性的趋同靶向策略

阅读:9
作者:Chunge Zhong #, Wen-Jie Jiang #, Yingjia Yao, Zexu Li, You Li, Shengnan Wang, Xiaofeng Wang, Wenjuan Zhu, Siqi Wu, Jing Wang, Shuangshuang Fan, Shixin Ma, Yeshu Liu, Han Zhang, Wenchang Zhao, Lu Zhao, Yi Feng, Zihan Li, Ruifang Guo, Li Yu, Fengyun Pei, Jun Hu, Xingzhi Feng, Zihuan Yang, Zhengjia Yan

Abstract

Resistance to chemotherapy has been a major hurdle that limits therapeutic benefits for many types of cancer. Here we systematically identify genetic drivers underlying chemoresistance by performing 30 genome-scale CRISPR knockout screens for seven chemotherapeutic agents in multiple cancer cells. Chemoresistance genes vary between conditions primarily due to distinct genetic background and mechanism of action of drugs, manifesting heterogeneous and multiplexed routes towards chemoresistance. By focusing on oxaliplatin and irinotecan resistance in colorectal cancer, we unravel that evolutionarily distinct chemoresistance can share consensus vulnerabilities identified by 26 second-round CRISPR screens with druggable gene library. We further pinpoint PLK4 as a therapeutic target to overcome oxaliplatin resistance in various models via genetic ablation or pharmacological inhibition, highlighting a single-agent strategy to antagonize evolutionarily distinct chemoresistance. Our study not only provides resources and insights into the molecular basis of chemoresistance, but also proposes potential biomarkers and therapeutic strategies against such resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。