CPE Regulates Proliferation and Apoptosis of Primary Myocardial Cells Mediated by Ischemia and Hypoxia Injury

CPE调控缺血缺氧损伤介导的原代心肌细胞增殖与凋亡

阅读:6
作者:Jin Li, Zishuang Dong, Yuxiong Pan, Luchen Wang, Wei Zhao, Jian Zhang

Conclusion

Overexpression of CPE in primary cardiomyocytes can effectively alleviate the decreased cell activity, increased apoptosis, and decreased proliferation caused by I/H and regulated by Wnt/β-catenin pathway.

Methods

Quantitative real-time polymerase chain reaction (qRT-PCR) technology was used to detect the expression of CPE in sham and myocardial infarction (MI) rat heart tissue, and the plasmid was transferred into primary cardiomyocytes by transfection technology. The apoptosis rate of cardiomyocytes was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining, Annexin V-PI staining, and Cell Counting Kit-8 (CCK-8) assay. In addition, Caspase kit and qRT-PCR technology were used to detect the expression of apoptosis-related factors. The cell proliferation was detected by 5-ethynyl-2'-deoxyuridine (EdU) staining, flow cytometry, and qRT-PCR technology. In addition, Western blotting (WB) and qRT-PCR techniques were used to detect the Wnt/β-catenin pathway.

Objective

To observe the effect of carboxypeptidase E (CPE) on the ischemia and hypoxia (I/H) injury of primary cardiomyocytes.

Results

First, we found that the expression of CPE in the marginal zone of MI was obviously reduced. Overexpression of CPE in primary cardiomyocytes can effectively inhibit ischemia/hypoxia (I/H)-induced apoptosis and decreased cell activity. In addition, CPE can promote cell proliferation and relieve the inhibitory effect of I/H on cardiomyocytes. At the same time, CPE can promote the expression of β-catenin and c-myc.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。