Role of Clathrin Light Chains in Regulating Invadopodia Formation

网格蛋白轻链在调控侵袭性伪足形成中的作用

阅读:7
作者:Markus Mukenhirn, Francesco Muraca, Delia Bucher, Edgar Asberger, Elisa Cappio Barazzone, Elisabetta Ada Cavalcanti-Adam, Steeve Boulant

Abstract

One of the most fundamental processes of the cell is the uptake of molecules from the surrounding environment. Clathrin-mediated endocytosis (CME) is the best-described uptake pathway and regulates nutrient uptake, protein and lipid turnover at the plasma membrane (PM), cell signaling, cell motility and cell polarity. The main protein in CME is clathrin, which assembles as a triskelion-looking building block made of three clathrin heavy chains and three clathrin light chains. Compared to clathrin heavy chains (CHCs), the role of the two isoforms of clathrin light chains (CLCA and CLCB) is poorly understood. Here, we confirm that the simultaneous deletion of both CLCA/B causes abnormal actin structures at the ventral PM and we describe them, for the first time, as functional invadopodia rather than disorganized actin-cytoskeleton assembly sites. Their identification is based on the occurrence of common invadopodia markers as well as functional invadopodia activity characterized by an increased local proteolytic activity of the extracellular matrix proteins. We demonstrate that CLCA/B deletion impacts the intracellular trafficking and recovery of the matrix metalloproteinase 14 (MMP14) leading to its accumulation at the plasma membrane and induction of invadopodia formation. Importantly, we show that invadopodia formation can be prevented by depletion of MMP14. As such, we propose that CLCA/B regulate invadopodia formation by regulating MMP14 delivery to the plasma membrane.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。