Multifunctional compounds lithium chloride and methylene Blue attenuate the negative effects of diisopropylfluorophosphate on axonal transport in rat cortical neurons

多功能化合物氯化锂和亚甲蓝减轻二异丙基氟磷酸酯对大鼠皮质神经元轴突运输的负面影响

阅读:5
作者:Sean X Naughton, Wayne D Beck, Zhe Wei, Guangyu Wu, Alvin V Terry Jr

Abstract

Organophosphates (OPs) are valuable as pesticides in agriculture and for controlling deadly vector-borne illnesses; however, they are highly toxic and associated with many deleterious health effects in humans including long-term neurological impairments. Antidotal treatment regimens are available to combat the symptoms of acute OP toxicity, which result from the irreversible inhibition of acetylcholinesterase (AChE). However, there are no established treatments for the long-term neurological consequences of OP exposure. In addition to AChE, OPs can negatively affect multiple protein targets as well as biological processes such as axonal transport. Given the fundamental nature of axonal transport to neuronal health, we rationalized that this process might serve as a general focus area for novel therapeutic strategies against OP toxicity. In the studies described here, we employed a multi-target, phenotypic screening, and drug repurposing strategy for the evaluations of potential novel OP-treatments using a primary neuronal culture model and time-lapse live imaging microscopy. Two multi-target compounds, lithium chloride (LiCl) and methylene blue (MB), which are FDA-approved for other indications, were evaluated for their ability to prevent the negative effects of the OP, diisopropylfluorophosphate (DFP) on axonal transport. The results indicated that both LiCl and MB prevented DFP-induced impairments in anterograde and retrograde axonal transport velocities in a concentration dependent manner. While in vivo studies will be required to confirm our in vitro findings, these experiments support the potential of LiCl and MB as repurposed drugs for the treatment of the long-term neurological deficits associated with OP exposure (currently an unmet medical need).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。