Prostaglandin F2α Facilitates Hepatic Glucose Production Through CaMKIIγ/p38/FOXO1 Signaling Pathway in Fasting and Obesity

前列腺素 F2α 通过 CaMKIIγ/p38/FOXO1 信号通路促进禁食和肥胖中的肝脏葡萄糖生成

阅读:6
作者:Yuanyang Wang, Shuai Yan, Bing Xiao, Shengkai Zuo, Qianqian Zhang, Guilin Chen, Yu Yu, Di Chen, Qian Liu, Yi Liu, Yujun Shen, Ying Yu

Abstract

Gluconeogenesis is drastically increased in patients with type 2 diabetes and accounts for increased fasting plasma glucose concentrations. Circulating levels of prostaglandin (PG) F2α are also markedly elevated in diabetes; however, whether and how PGF2α regulates hepatic glucose metabolism remain unknown. Here, we demonstrated that PGF2α receptor (F-prostanoid receptor [FP]) was upregulated in the livers of mice upon fasting- and diabetic stress. Hepatic deletion of the FP receptor suppressed fasting-induced hepatic gluconeogenesis, whereas FP overexpression enhanced hepatic gluconeogenesis in mice. FP activation promoted the expression of gluconeogenic enzymes (PEPCK and glucose-6-phosphatase) in hepatocytes in a FOXO1-dependent manner. Additionally, FP coupled with Gq in hepatocytes to elicit Ca2+ release, which activated Ca2+/calmodulin-activated protein kinase IIγ (CaMKIIγ) to increase FOXO1 phosphorylation and subsequently accelerate its nuclear translocation. Blockage of p38 disrupted CaMKIIγ-induced FOXO1 nuclear translocation and abrogated FP-mediated hepatic gluconeogenesis in mice. Moreover, knockdown of hepatic FP receptor improved insulin sensitivity and glucose homeostasis in ob/ob mice. FP-mediated hepatic gluconeogenesis via the CaMKIIγ/p38/FOXO1 signaling pathway, indicating that the FP receptor might be a promising therapeutic target for type 2 diabetes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。