IL-33, IL-25 and TSLP contribute to development of fungal-associated protease-induced innate-type airway inflammation

IL-33、IL-25 和 TSLP 促进真菌相关蛋白酶诱导的先天性气道炎症的发展

阅读:4
作者:Yoshihisa Hiraishi, Sachiko Yamaguchi, Takamichi Yoshizaki, Aya Nambu, Eri Shimura, Ayako Takamori, Seiko Narushima, Wakako Nakanishi, Yosuke Asada, Takafumi Numata, Maho Suzukawa, Yasuhiro Yamauchi, Akira Matsuda, Ken Arae, Hideaki Morita, Tomoaki Hoshino, Hajime Suto, Ko Okumura, Kenji Matsumoto, 

Abstract

Certain proteases derived from house dust mites and plants are considered to trigger initiation of allergic airway inflammation by disrupting tight junctions between epithelial cells. It is known that inhalation of proteases such as house dust mite-derived Der p1 and/or papaya-derived papain caused airway eosinophilia in naïve mice and even in Rag-deficient mice that lack acquired immune cells such as T, B and NKT cells. In contrast, little is known regarding the possible involvement of proteases derived from Aspergillus species (fungal-associated proteases; FAP), which are ubiquitous saprophytic fungi in the environment, in the development of allergic airway eosinophilia. Here, we found that inhalation of FAP by naïve mice led to airway eosinophilia that was dependent on protease-activated receptor-2 (PAR2), but not TLR2 and TLR4. Those findings suggest that the protease activity of FAP, but not endotoxins in FAP, are important in the setting. In addition, development of that eosinophilia was mediated by innate immune cells (ILCs) such as innate lymphoid cells, but not by acquired immune cells such as T, B and NKT cells. Whereas IL-33, IL-25 and thymic stromal lymphopoietin (TSLP) are involved in induction of FAP-induced ILC-mediated airway eosinophilia, IL-33-rather than IL-25 and/or TSLP-was critical for the eosinophilia in our model. Our findings improve our understanding of the molecular mechanisms involved in induction of airway inflammation by FAP.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。