Conclusion
This study demonstrates variable HER3 expression across breast cancer subtypes. HER3 expression can be assessed early, post-neoadjuvant therapy, providing valuable insight into cancer biology and potentially serving as a prognostic biomarker. Clinical translation of neoadjuvant therapy assessment can be achieved using HER3 PET imaging, offering real-time information on tumor biology and guiding personalized treatment for breast cancer patients.
Purpose
HER3, a member of the EGFR receptor family, plays a central role in driving oncogenic cell proliferation in breast cancer. Novel HER3 therapeutics are showing promising
Results
Variable baseline HER3 expression was found in newly diagnosed breast cancer and correlated positively with pAKT across subtypes (r = 0.45). In patients receiving neoadjuvant/systemic therapy, changes in HER3 expression were variable. In a hormone receptor-positive (ER +/PR +/HER2-) patient, there was a statistically significant increase in HER3 expression post neoadjuvant therapy, while there was no significant change in HER3 expression in a ER +/PR +/HER2+ patient. However, both of these patients showed increased downstream signaling in the PI3K/AKT pathway. One subject with ER +/PR -/HER2- breast cancer and another subject with ER +/PR +/HER2 + breast cancer showed decreased HER3 expression. Transcriptomic findings, revealed an immune suppressive environment in patients with decreased HER3 expression post therapy.
