Circ_0078767 Inhibits the Progression of Non-Small-Cell Lung Cancer by Regulating the GPX3 Expression by Adsorbing miR-665

Circ_0078767通过吸附miR-665调控GPX3表达抑制非小细胞肺癌进展

阅读:6
作者:Xiting Liu, Ze Chen, Yuqiang Wu, Feng Gu, Dong Yan, Lei Yang, Qin Ma, Caihong Fu

Abstract

Non-small-cell lung cancer (NSCLC) is one of the most serious cancers. The circular RNA_0078767 (circ_0078767) expression was decreased in NSCLC tissues. However, the molecular mechanism of circ_0078767 remains unknown. The expression of circ_0078767, microRNA-665 (miR-665), and glutathione peroxidase 3 (GPX3) was detected by quantitative real-time fluorescence polymerase chain reaction (qRT-PCR). Cell proliferation, migration, and invasion were detected by colony formation assay and transwell assay, respectively. The lactate production and glucose consumption were tested by glycolysis. Western blot examined the protein levels of hexokinase-2 (HK2), matrix metalloproteinase-9 (MMP9), and GPX3 cells. Circinteractome predicted the relationship between miR-665 and circ_0078767 or GPX3 and was verified by dual luciferase reporter assays. The xenotransplantation model was established to study the role of circ_0078767 in vivo. The expression of circ_0078767 and GPX3 was decreased in NSCLC tissues, while the expression of miR-665 was increased. Circ_0078767 can sponge miR-665, and GPX3 is the target of miR-665. In vitro complement experiments showed that knockdown of circ_0078767 significantly promoted malignant behavior of NSCLC, while cotransfection of miR-665 inhibitor partially reduced this change. In addition, the GPX3 overexpression decreased the promoting effects of miR-665 upregulation on proliferation, migration, and invasion of NSCLC cells. Mechanically, circ_0078767 regulates the GPX3 expression in NSCLC cells by spongy miR-665. In addition, in vivo studies have shown that downregulation of circ_0078767 promotes tumor growth. Circ_0078767 silencing promotes proliferation, migration, invasion, and glycolysis of NSCLC cells by regulating the miR-665/GPX3 axis, suggesting that circ_0078767/miR-665/GPX3 axis may be a potential regulatory mechanism for the treatment of NSCLC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。