Germline stem cell integrity and quiescence are controlled by an AMPK-dependent neuronal trafficking pathway

生殖系干细胞的完整性和静止状态由 AMPK 依赖的神经元运输通路控制

阅读:5
作者:Christopher Wong, Pratik Kadekar, Elena Jurczak, Richard Roy

Abstract

During periods of energetic stress, Caenorhabditis elegans can execute a developmentally quiescent stage called "dauer", during which all germline stem cells undergo a G2 cell cycle arrest. In animals that lack AMP-activated protein kinase (AMPK) signalling, the germ cells fail to arrest, undergo uncontrolled proliferation, and lose their reproductive capacity upon recovery from this quiescent stage. These germline defects are accompanied by, and likely result from, an altered chromatin landscape and gene expression program. Through genetic analysis we identified an allele of tbc-7, a predicted RabGAP protein that functions in the neurons, which when compromised, suppresses the germline hyperplasia in the dauer larvae, as well as the post-dauer sterility and somatic defects characteristic of AMPK mutants. This mutation also corrects the abundance and aberrant distribution of transcriptionally activating and repressive chromatin marks in animals that otherwise lack all AMPK signalling. We identified RAB-7 as one of the potential RAB proteins that is modulated by tbc-7 and show that the activity of RAB-7 is critical for the maintenance of germ cell integrity during the dauer stage. We reveal that TBC-7 is regulated by AMPK through two mechanisms when the animals enter the dauer stage. Acutely, the AMPK-mediated phosphorylation of TBC-7 reduces its activity, potentially by autoinhibition, thereby preventing the inactivation of RAB-7. In the more long term, AMPK regulates the miRNAs mir-1 and mir-44 to attenuate tbc-7 expression. Consistent with this, animals lacking mir-1 and mir-44 are post-dauer sterile, phenocopying the germline defects of AMPK mutants. Altogether, we have uncovered an AMPK-dependent and microRNA-regulated cellular trafficking pathway that is initiated in the neurons, and is critical to control germline gene expression cell non-autonomously in response to adverse environmental conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。