Stromal Gli signaling regulates the activity and differentiation of prostate stem and progenitor cells

基质 Gli 信号调节前列腺干细胞和祖细胞的活性和分化

阅读:6
作者:Qianjin Li, Omar A Alsaidan, Sumit Rai, Meng Wu, Huifeng Shen, Zanna Beharry, Luciana L Almada, Martin E Fernandez-Zapico, Lianchun Wang, Houjian Cai

Abstract

Interactions between cells in the stroma and epithelium facilitate prostate stem cell activity and tissue regeneration capacity. Numerous molecular signal transduction pathways, including the induction of sonic hedgehog (Shh) to activate the Gli transcription factors, are known to mediate the cross-talk of these two cellular compartments. However, the details of how these signaling pathways regulate prostate stem and progenitor cell activity remain elusive. Here we demonstrate that, although cell-autonomous epithelial Shh-Gli signaling is essential to determine the expression levels of basal cell markers and the renewal potential of epithelial stem and progenitor cells, stromal Gli signaling regulates prostate stem and progenitor cell activity by increasing the number and size of prostate spheroids in vitro Blockade of stromal Gli signaling also inhibited prostate tissue regeneration in vivo The inhibition of stromal Gli signaling suppressed the differentiation of basal and progenitor cells to luminal cells and limited prostate tubule secretory capability. Additionally, stromal cells were able to compensate for the deficiency of epithelial Shh signaling in prostate tissue regeneration. Mechanistically, suppression of Gli signaling increased the signaling factor transforming growth factor β (TGFβ) in stromal cells. Elevation of exogenous TGFβ1 levels inhibited prostate spheroid formation, suggesting that a stromal Gli-TGFβ signaling axis regulates the activity of epithelial progenitor cells. Our study illustrates that Gli signaling regulates epithelial stem cell activity and renewal potential in both epithelial and stromal compartments.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。