Baicalin ameliorates multidrug-resistant Pseudomonas aeruginosa induced pulmonary inflammation in rat via arginine biosynthesis

黄芩苷通过精氨酸生物合成改善大鼠耐多药铜绿假单胞菌诱发的肺部炎症

阅读:6
作者:Lei Li, Herong Cui, Yue Zhang, Wei Xie, Ying Lin, Yufei Guo, Tingxuan Huang, Bei Xue, Wenbo Guo, Zhenfeng Huang, Tian Man, Huiyong Yu, Zhiguang Zhai, Miao Cheng, Mingzhe Wang, Haimin Lei, Chengxiang Wang

Abstract

Multidrug-resistance (MDR) Pseudomonas aeruginosa (P. aeruginosa) is a lethal gram-negative pathogen causing hospital-acquired and ventilator-associated pneumonia, which is difficult to treat. Our previous studies confirmed that baicalin, an essential bioactive component in Scutellaria baicalensis Georgi, exhibited anti-inflammatory effects in an acute pneumonia rat model induced by MDR P. aeruginosa. However, this effect of baicalin in constrast its low bioavailability, and its mechanism of action is still unknown. Thus, this study investigated whether the therapeutic effects of baicalin against MDR P. aeruginosa acute pneumonia are owing to the regulation of gut microbiota and their metabolites using pyrosequencing of the 16S rRNA genes in rat feces and metabolomics. As a result, baicalin attenuated the inflammation by acting directly on neutrophils and regulated the production of the inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-10. The mechanisms were through down-regulation of TLR4 and inhibition of NF-κB. Furthermore, pyrosequencing of the 16S rRNA genes in rat feces revealed that baicalin regulated the composition of gut microbial communities. At the genus level, baicalin efficiently increased the abundance of Ligilactobacillus, Lactobacillus and Bacteroides, but decreased the abundance of Muribaculaceae and Alistipes. Further, arginine biosynthesis was analyzed as the core pathway regulated by baicalin via combination with predicting gut microbiota function and targeted metabolomics. In conclusion, this study has demonstrated that baicalin relieved inflammatory injury in acute pneumonia rat induced by MDR P. aeruginosa via arginine biosynthesis associated with gut microbiota. Baicalin could be a promising and effective adjunctive therapy for lung inflammation caused by MDR P. aeruginosa infection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。