Binding and Sensing Properties of a Hybrid Naphthalimide-Pyrene Aza-Cyclophane towards Nucleotides in an Aqueous Solution

杂化萘二甲酰亚胺-芘氮杂环芳烷对水溶液中核苷酸的结合和传感特性

阅读:6
作者:Aleksandr M Agafontsev, Aleksandr S Oshchepkov, Tatiana A Shumilova, Evgeny A Kataev

Abstract

Selective recognition of nucleotides with synthetic receptors is an emerging direction to solve a series of nucleic acid-related challenges in biochemistry. Towards this goal, a new aza-cyclophane with two different dyes, naphthalimide and pyrene, connected through a triamine linker has been synthesized and studied for the ability to bind and detect nucleoside triphosphates in an aqueous solution. The receptor shows Foerster resonance energy transfer (FRET) in fluorescence spectra upon excitation in DMSO, which is diminished dramatically in the presence of water. According to binding studies, the receptor has a preference to bind ATP (adenosine triphosphate) and CTP (cytidine triphosphate) with a "turn-on" fluorescence response. Two separate emission bands of dyes allow one to detect nucleotides in a ratiometric manner in a broad concentration range of 10-5-10-3 M. Spectroscopic measurements and quantum chemical calculations suggest the formation of receptor-nucleotide complexes, which are stabilized by dispersion interactions between a nucleobase and dyes, while hydrogen bonding interactions of nucleobases with the amine linkers are responsible for selectivity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。