NBM-T-L-BMX-OS01, Semisynthesized from Osthole, Is a Novel Inhibitor of Histone Deacetylase and Enhances Learning and Memory in Rats

NBM-TL-BMX-OS01 由蛇床子素半合成,是一种新型组蛋白去乙酰化酶抑制剂,可增强大鼠的学习和记忆能力

阅读:5
作者:Ying-Chen Yang, Chia-Nan Chen, Carol-Imei Wu, Wei-Jan Huang, Tsun-Yung Kuo, Ming-Chung Kuan, Tung-Hu Tsai, Jing-Shi Huang, Chung-Yang Huang

Abstract

NBM-T-L-BMX-OS01 (BMX) was derived from the semisynthesis of osthole, isolated from Cnidium monnieri (L.) Cuss., and was identified to be a potent inhibitor of HDAC8. This study shows that HDAC8 is highly expressed in the pancreas and the brain. The function of HDAC8 in the brain has not been adequately studied. Because BMX enhances neurite outgrowth and cAMP response element-binding protein (CREB) activation, the effect of BMX on neural plasticity such as learning and memory is examined. To examine declarative and nondeclarative memory, a water maze, a passive one-way avoidance task, and a novel object recognition task were performed. Results from the water maze revealed that BMX and suberoylanilide-hydroxamic-acid-(SAHA-) treated rats showed shorter escape latency in finding the hidden platform. The BMX-treated animals spent more time in the target quadrant in the probe trial performance. An analysis of the passive one-way avoidance results showed that the BMX-treated animals stayed longer in the illuminated chamber by 1 day and 7 days after footshock. The novel object recognition task revealed that the BMX-treated animals showed a marked increase in the time spent exploring novel objects. Furthermore, BMX ameliorates scopolamine-(Sco-) induced learning and memory impairment in animals, indicating a novel role of BMX in learning and memory.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。