Actin Sliding Velocities are Influenced by the Driving Forces of Actin-Myosin Binding

肌动蛋白滑动速度受肌动蛋白-肌球蛋白结合驱动力的影响

阅读:8
作者:Travis J Stewart, Del Ray Jackson Jr, Ryan D Smith, Steven F Shannon, Christine R Cremo, Josh E Baker

Abstract

Unloaded shortening speeds, V, of muscle are thought to be limited by actin-bound myosin heads that resist shortening, or V = a·d·τon-1 where τon-1 is the rate at which myosin detaches from actin and d is myosin's step size. The a-term describes the efficiency of force transmission between myosin heads, and has been shown to become less than one at low myosin densities in a motility assay. Molecules such as inorganic phosphate, Pi, and blebbistatin inhibit both V and actin-myosin strong binding kinetics suggesting a link between V and attachment kinetics. To determine whether these small molecules slow V by increasing resistance to actin sliding or by decreasing the efficiency of force transmission, a, we determine how inhibition of V by Pi and blebbistatin changes the force exerted on actin filaments during an in vitro sliding assay, measured from changes in the rate, τbreak-1, at which actin filaments break. Upon addition of 30 mM Pi to a low (30 μM) [ATP] motility buffer V decreased from 1.8 to 1.3 μm·sec-1 and τbreak-1 from 0.029 to 0.018 sec-1. Upon addition of 50 μM blebbistatin to a low [ATP] motility buffer, V decreased from 1.0 to 0.7 μm·sec-1 and τbreak-1 from 0.059 to 0.022 sec-1. These results imply that blebbistatin and Pi slow V by decreasing force transmission, a, not by increasing resistive forces, implying that actin-myosin attachment kinetics influence V.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。