Sex differences in the transcriptome of extracellular vesicles secreted by fetal neural stem cells and effects of chronic alcohol exposure

胎儿神经干细胞分泌的细胞外囊泡转录组的性别差异及慢性酒精暴露的影响

阅读:5
作者:Dae D Chung, Amanda H Mahnke, Marisa R Pinson, Nihal A Salem, Michael S Lai, Natalie P Collins, Andrew E Hillhouse, Rajesh C Miranda

Background

Prenatal alcohol (ethanol) exposure (PAE)

Conclusions

The EV transcriptome is distinctly different from, and more sex-variant than, the transcriptome of cell-of-origin NSCs. Ethanol, a common teratogen, results in dose-dependent sorting of RNA transcripts from NSCs to EVs which may reprogram the EV-mediated endocrine environment during neurogenesis.

Methods

Sex-specified fetal murine iso-cortical neuroepithelia from three separate pregnancies were maintained ex vivo, as neurosphere cultures to model the early neurogenic niche. EVs were isolated by ultracentrifugation from NSCs exposed to a dose range of ethanol. RNA from paired EV and cell-of-origin NSC samples was processed for ribosomal RNA-depleted RNA sequencing. Differential expression analysis and exploratory weighted gene co-expression network analysis (WGCNA) identified candidate genes and gene networks that were drivers of alterations to the transcriptome of EVs relative to cells.

Results

The RNA content of EVs differed significantly from cell-of-origin NSCs. Biological sex contributed to unique transcriptome variance in EV samples, where > 75% of the most variant transcripts were also sex-variant in EVs but not in cell-of-origin NSCs. WGCNA analysis also identified sex-dependent enrichment of pathways, including dopamine receptor binding and ectoderm formation in female EVs and cell-substrate adhesion in male EVs, with the top significant DEGs from differential analysis of overall individual gene expressions, i.e., Arhgap15, enriched in female EVs, and Cenpa, enriched in male EVs, also serving as WCGNA hub genes of sex-biased EV WGCNA clusters. In addition to the baseline RNA content differences, ethanol exposure resulted in a significant dose-dependent change in transcript expression in both EVs and cell-of-origin NSCs that predominantly altered sex-invariant RNAs. Moreover, at the highest dose, ~ 73% of significantly altered RNAs were enriched in EVs, but depleted in NSCs. Conclusions: The EV transcriptome is distinctly different from, and more sex-variant than, the transcriptome of cell-of-origin NSCs. Ethanol, a common teratogen, results in dose-dependent sorting of RNA transcripts from NSCs to EVs which may reprogram the EV-mediated endocrine environment during neurogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。