Effect of Hypoxia-regulated Polo-like Kinase 3 (Plk3) on Human Limbal Stem Cell Differentiation

缺氧调节 Polo 样激酶 3 (Plk3) 对人类角膜缘干细胞分化的影响

阅读:13
作者:Ling Wang, Sheyla González, Wei Dai, Sophie Deng, Luo Lu

Abstract

Hypoxic conditions in the cornea affect epithelial function by activating Polo-like kinase 3 (Plk3) signaling and the c-Jun·AP-1 transcription complex, resulting in apoptosis of corneal epithelial cells. Hypoxic stress in the culture conditions also regulates limbal stem cell growth and fate. In this study, we demonstrate that there is a differential response of Plk3 in hypoxic stress-induced primary human limbal stem (HLS) and corneal epithelial (HCE) cells, resulting in different pathways of cell fate. We found that hypoxic stress induced HLS cell differentiation by down-regulating Plk3 activity at the transcription level, which was opposite to the effect of hypoxic stress on Plk3 activation to elicit HCE cell apoptosis, detected by DNA fragmentation and TUNEL assays. Hypoxic stress-induced increases in c-Jun phosphorylation/activation were not observed in HLS cells because Plk3 expression and activity were suppressed in hypoxia-induced HLS cells. Instead, hypoxic stress-induced HLS cell differentiation was monitored by cell cycle analysis and measured by the decrease and increase in p63 and keratin 12 expression, respectively. Hypoxic stress-induced Plk3 signaling to regulate c-Jun activity, resulting in limbal stem cell differentiation and center epithelial apoptosis, was also found in the corneas of wild-type and Plk3(-/-)-deficient mice. Our results, for the first time, reveal the differential effects of hypoxic stress on Plk3 activity in HLS and HCE cells. Instead of apoptosis, hypoxic stress suppresses Plk3 activity to protect limbal stem cells from death and to allow the process of HLS cell differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。