Integrative Genomic Analysis of Gemcitabine Resistance in Pancreatic Cancer by Patient-derived Xenograft Models

通过患者来源的异种移植模型对胰腺癌吉西他滨耐药性的综合基因组分析

阅读:9
作者:Gang Yang #, Wenfang Guan #, Zhe Cao #, Wenbo Guo #, Guangbing Xiong, Fangyu Zhao, Mengyu Feng, Jiangdong Qiu, Yueze Liu, Michael Q Zhang, Lei You, Taiping Zhang, Yupei Zhao, Jin Gu

Conclusions

This integrative genomic study systematically investigated the predictive markers and molecular mechanisms of chemoresistance in pancreatic cancer and provides potential therapy targets for overcoming gemcitabine resistance.

Purpose

Gemcitabine is most commonly used for pancreatic cancer. However, the molecular features and mechanisms of the frequently occurring resistance remain unclear. This work aims at exploring the molecular features of gemcitabine resistance and identifying candidate biomarkers and combinatorial targets for the treatment. Experimental design: In this study, we established 66 patient-derived xenografts (PDXs) on the basis of clinical pancreatic cancer specimens and treated them with gemcitabine. We generated multiomics data (including whole-exome sequencing, RNA sequencing, miRNA sequencing, and DNA methylation array) of 15 drug-sensitive and 13 -resistant PDXs before and after the gemcitabine treatment. We performed integrative computational analysis to identify the molecular networks related to gemcitabine intrinsic and acquired resistance. Then, short hairpin RNA-based high-content screening was implemented to validate the function of the deregulated genes.

Results

The comprehensive multiomics analysis and functional experiment revealed that MRPS5 and GSPT1 had strong effects on cell proliferation, and CD55 and DHTKD1 contributed to gemcitabine resistance in pancreatic cancer cells. Moreover, we found miR-135a-5p was significantly associated with the prognosis of patients with pancreatic cancer and could be a candidate biomarker to predict gemcitabine response. Comparing the molecular features before and after the treatment, we found that PI3K-Akt, p53, and hypoxia-inducible factor-1 pathways were significantly altered in multiple patients, providing candidate target pathways for reducing the acquired resistance. Conclusions: This integrative genomic study systematically investigated the predictive markers and molecular mechanisms of chemoresistance in pancreatic cancer and provides potential therapy targets for overcoming gemcitabine resistance.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。