A Mad2-Mediated Translational Regulatory Mechanism Promoting S-Phase Cyclin Synthesis Controls Origin Firing and Survival to Replication Stress

Mad2介导的翻译调控机制促进S期细胞周期蛋白合成,从而控制复制起始和应对复制压力的能力。

阅读:4
作者:Sophie Gay ,Daniele Piccini ,Christopher Bruhn ,Sara Ricciardi ,Paolo Soffientini ,Walter Carotenuto ,Stefano Biffo ,Marco Foiani

Abstract

Cell survival to replication stress depends on the activation of the Mec1ATR-Rad53 checkpoint response that protects the integrity of stalled forks and controls the origin firing program. Here we found that Mad2, a member of the spindle assembly checkpoint (SAC), contributes to efficient origin firing and to cell survival in response to replication stress. We show that Rad53 and Mad2 promote S-phase cyclin expression through different mechanisms: while Rad53 influences Clb5,6 degradation, Mad2 promotes their protein synthesis. We found that Mad2 co-sediments with polysomes and modulates the association of the translation inhibitor Caf204E-BP with the translation machinery and the initiation factor eIF4E. This Mad2-dependent translational regulatory process does not depend on other SAC proteins. Altogether our observations indicate that Mad2 has an additional function outside of mitosis to control DNA synthesis and collaborates with the Mec1-Rad53 regulatory axis to allow cell survival in response to replication stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。