Selective Cytotoxicity of the NAMPT Inhibitor FK866 Toward Gastric Cancer Cells With Markers of the Epithelial-Mesenchymal Transition, Due to Loss of NAPRT

由于 NAPRT 缺失,NAMPT 抑制剂 FK866 对具有上皮-间质转化标志物的胃癌细胞具有选择性细胞毒性

阅读:5
作者:Jooyoung Lee, Hyosil Kim, Jae Eun Lee, Su-Jin Shin, Sejin Oh, Gino Kwon, Hakhyun Kim, Yoon Young Choi, Michael A White, Soonmyung Paik, Jae-Ho Cheong, Hyun Seok Kim

Aims

Markers of the epithelial-to-mesenchymal transition (EMT) in gastric tumor tissues are associated with poor patient outcomes. We performed a screen to identify pharmacologic compounds that kill gastric cancer cells with EMT-associated gene expression patterns and investigate their mechanisms.

Background & aims

Markers of the epithelial-to-mesenchymal transition (EMT) in gastric tumor tissues are associated with poor patient outcomes. We performed a screen to identify pharmacologic compounds that kill gastric cancer cells with EMT-associated gene expression patterns and investigate their mechanisms.

Conclusions

FK866 selectively kills gastric cancer cells with an EMT gene expression signature by inhibiting nicotinamide phosphoribosyltransferase in cells with NAPRT deficiency. Loss of NAPRT expression, frequently through promoter hypermethylation, is observed in many gastric tumors of the EMT subtype. FK866 might be used to treat patients with tumors of this subtype.

Methods

We identified 29 gastric cancer cell lines with a gene expression signature previously associated with an EMT subtype, based on data from RNA sequence analyses, and confirmed the mesenchymal phenotypes of 7 lines (Hs746T, SNU1750, MKN1, SK4, SNU484, SNU668, and YCC11), based on invasive activity and protein markers. We screened 1,345 compounds for their ability to kill cells with the EMT signature compared with cell lines without this pattern. We tested the effects of identified compounds in BALB/c nude mice bearing GA077 tumors; mice were given intraperitoneal injections of the compound or vehicle (control) twice daily for 24 days and tumor growth was monitored. Proteins associated with the toxicity of the compounds were overexpressed in MKN1 and SNU484 cells or knocked down in MKN45 and SNU719 using small interfering RNAs. We performed immunohistochemical analyses of 942 gastric cancer tissues and investigated associations between EMT markers and protein expression patterns.

Results

The nicotinamide phosphoribosyltransferase inhibitor FK866 killed 6 of 7 gastric cancer cell lines with EMT-associated gene expression signatures but not gastric cancer cells without this signature. The 6 EMT-subtype gastric cell lines expressed significantly low levels of nicotinic acid phosphoribosyltransferase (NAPRT), which makes the cells hypersensitive to nicotinamide phosphoribosyltransferase inhibition. Gastric cell lines that expressed higher levels of NAPRT, regardless of EMT markers, were sensitized to FK866 after knockdown of NAPRT, whereas overexpression of NAPRT in deficient EMT cell lines protected them from FK866-mediated toxicity. Administration of FK866 to nude mice with tumors grown from GA077 cells (human gastric cancer tumors of the EMT subtype) led to tumor regression in 2 weeks; FK866 did not affect tumors grown from MKN45 cells without the EMT expression signature. Loss of NAPRT might promote the EMT, because it stabilizes β-catenin. We correlated the EMT gene expression signature with lower levels of NAPRT in 942 gastric tumors from patients; we also found lower levels of NAPRT mRNA in colorectal, pancreatic, and lung adenocarcinoma tissues with the EMT gene expression signature. Conclusions: FK866 selectively kills gastric cancer cells with an EMT gene expression signature by inhibiting nicotinamide phosphoribosyltransferase in cells with NAPRT deficiency. Loss of NAPRT expression, frequently through promoter hypermethylation, is observed in many gastric tumors of the EMT subtype. FK866 might be used to treat patients with tumors of this subtype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。