Digging deeper - A new data mining workflow for improved processing and interpretation of high resolution GC-Q-TOF MS data in archaeological research

深入挖掘 - 一种新的数据挖掘工作流程,用于改进考古研究中高分辨率 GC-Q-TOF MS 数据的处理和解释

阅读:7
作者:Ansgar Korf #, Simon Hammann #, Robin Schmid, Matti Froning, Heiko Hayen, Lucy J E Cramp

Abstract

Gas chromatography-mass spectrometry profiling is the most established method for the analysis of organic residues, particularly lipids, from archaeological contexts. This technique allows the decryption of hidden chemical information associated with archaeological artefacts, such as ceramic pottery fragments. The molecular and isotopic compositions of such residues can be used to reconstruct past resource use, and hence address major questions relating to patterns of subsistence, diet and ritual practices in the past. A targeted data analysis approach, based on previous findings reported in the literature is common but greatly depends on the investigator's prior knowledge of specific compound classes and their mass spectrometric behaviour, and poses the risk of missing unknown, potentially diagnostic compounds. Organic residues from post-prehistoric archaeological samples often lead to highly complex chromatograms, which makes manual chromatogram inspection very tedious and time consuming, especially for large datasets. This poses a significant limitation regarding the scale and interpretative scopes of such projects. Therefore, we have developed a non-targeted data mining workflow to extract a higher number of known and unknown compounds from the raw data to reduce investigator's bias and to vastly accelerate overall analysis time. The workflow covers all steps from raw data handling, feature selection, and compound identification up to statistical interpretation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。