Gossypol has anti-cancer effects by dual-targeting MDM2 and VEGF in human breast cancer

棉酚通过双重靶向作用于人类乳腺癌中的 MDM2 和 VEGF 发挥抗癌作用

阅读:5
作者:Jing Xiong, Jiansha Li, Qin Yang, Jun Wang, Tiefen Su, Sheng Zhou

Background

Mouse double minute 2 (MDM2) and vascular endothelial growth factor (VEGF) are important molecules involved in tumor progression. We researched potential inhibitors that simultaneously target MDM2 and VEGF. In our recent study involving the performance of high-throughput screening with a fluorescence polarization assay, gossypol was identified as one of the top hits that inhibit protein-RNA binding activity. Because MDM2 is an RNA-binding protein and its targets include VEGF mRNA, we investigated whether gossypol has an inhibitory effect on MDM2-VEGF.

Conclusion

Gossypol has anti-cancer effects by dual-targeting MDM2 and VEGF in human breast cancer. Our study reveals a novel mechanism by which gossypol functions as an anticancer agent. We believe that MDM2-VEGF targeting represents a novel strategy for improving cancer outcome.

Methods

UV cross-linking and RNA binding assay, isothermal titration calorimetry assay, and ubiquitination assay were performed to determine mechanisms by which gossypol functions as a dual inhibitor of MDM2 and VEGF. The effect of gossypol on MDM2 and VEGF expression, cancer cell apoptosis, tumor growth and VEGF-mediated angiogenesis were studied in vitro and in vivo in different human breast cancer models with a different p53 status.

Results

We observed that gossypol inhibited expression of both MDM2 and VEGF in human breast cancer cells with either wild-type or mutant p53. A nechanistic study further demonstrated that, through disrupting the interaction between MDM2 protein and VEGF mRNA, gossypol induced MDM2 self-ubiquitination and decreased VEGF translation simultaneously, which resulted in both apoptosis and anti-angiogenesis effects. In vitro, regardless of p53 status, gossypol induced cancer cell apoptosis. In nude mouse xenograft in vivo models, gossypol suppressed tumor growth and VEGF-mediated angiogenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。