Adeno-associated virus-mediated in vivo suppression of expression of EPHX2 gene modulates the activity of paraventricular nucleus neurons in spontaneously hypertensive rats

腺相关病毒介导的 EPHX2 基因表达体内抑制调节自发性高血压大鼠室旁核神经元的活动

阅读:8
作者:Xiaoming Zhu, Kuibao Li, Yuanfeng Gao

Background

Hypertension can be attributed to increased sympathetic activities. Presympathetic neurons in the paraventricular nucleus (PVN) of the hypothalamus are capable of modulating sympathetic outflow, thus contributing to the pathogenesis of neurogenic hypertension. Epoxyeicosatrienoic acids (EETs) were reported to have anti-hypertensive effects, which could be degraded by soluble epoxide hydrolase (sEH), encoded by EPHX2. However, the potential effect of EETs on PVN neuron activity and the underlying molecular mechanism are largely unknown.

Conclusions

The elevation of EET levels by EPHX2 downregulation reduced presympathetic neuronal activity in the PVN of SHRs, leading to a reduced sympathetic outflow in hypertension rats. The ATP/SR/D-serine pathway of astrocytes is involved in EET-mediated neuroprotection.

Methods

Knockdown of EPHX2 in spontaneously hypertensive rats (SHRs) was achieved by tail-intravenous injection of AAV plasmid containing shRNA targeting EPHX2. Whole-cell patch clamp was used to record action potentials of PVN neurons. An LC-MS/MS System was employed to determine 14,15-EET levels in rat cerebrospinal fluid. qPCR and western blotting were applied to examine the expression level of EPHX2 in various tissues. ELISA and immunofluorescence staining were applied to examine the levels of ATP, D-serine and glial fibrillary acidic protein (GFAP) in isolated astrocytes.

Results

The expression level of EPHX2 was higher, while the level of 14,15-EET was lower in SHRs than normotensive Wistar-Kyoto rats (WKY) rats. The spike firing frequency of PNV neurons in SHRs was higher than in WKY rats at a given stimulus current, which could be reduced by either EPHX2 downregulation or 14,15-EET administration. In isolated hypothalamic astrocytes, the elevated intracellular ATP or D-serine induced by Angiotensin II (Ang II) treatment could be rescued by 14,15-EET addition or 14,15-EET combing serine racemase (SR) downregulation by siRNA, respectively. Furthermore, 14,15-EET treatment reduced the Ang II-induced elevation of GFAP immunofluorescence. Conclusions: The elevation of EET levels by EPHX2 downregulation reduced presympathetic neuronal activity in the PVN of SHRs, leading to a reduced sympathetic outflow in hypertension rats. The ATP/SR/D-serine pathway of astrocytes is involved in EET-mediated neuroprotection.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。