Stressed cybrids model demyelinated axons in multiple sclerosis

应激细胞杂种模型在多发性硬化症中脱髓鞘轴突

阅读:8
作者:Laura Llobet, Aurora Gómez-Durán, Ruth Iceta, Eldris Iglesias, Julio Montoya, Jesús Martín-Martínez, José Ramón Ara, Eduardo Ruiz-Pesini

Abstract

Multiple sclerosis is likely caused by a complex interaction of multiple genes and environmental factors. The contribution of mitochondrial DNA genetic backgrounds has been frequently reported. To evaluate the effect of mitochondrial DNA haplogroups in the same genetic and environmental circumstances, we have built human transmitochondrial cell lines and simulated the effect of axon demyelination, one of the hallmarks of multiple sclerosis pathology, by altering the ionic gradients through the plasmalemma and increasing ATP consumption. In this model, mitochondrial biogenesis is observed. This process is larger in Uk cybrids, which mirrors their lower oxidative phosphorylation capacity in basal conditions. This model replicates a process occurring in both patients suffering from multiple sclerosis and several animal models of axon demyelination. Therefore, it can be used to analyze the contribution of various mitochondrial DNA genotypes to multiple sclerosis. In this sense, a longer or stronger energy stress, such as that associated with demyelinated axons in multiple sclerosis, could make Uk individuals more susceptible to this pathology. Finally, pharmacologic compounds targeted to mitochondrial biogenesis could be a potential therapy for multiple sclerosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。