Role of PKCζ-NADPH oxidase signaling axis in PKCα-mediated Giα2 phosphorylation for inhibition of adenylate cyclase activity by angiotensin II in pulmonary artery smooth muscle cells

PKCζ-NADPH 氧化酶信号轴在 PKCα 介导的 Giα2 磷酸化抑制肺动脉平滑肌细胞中血管紧张素 II 腺苷酸环化酶活性中的作用

阅读:8
作者:Animesh Chowdhury, Jaganmay Sarkar, Pijush Kanti Pramanik, Tapati Chakraborti, Sajal Chakraborti

Abstract

We sought to determine the mechanism by which angiotensin II (AngII) inhibits isoproterenol induced increase in adenylate cyclase (AC) activity and cyclic adenosine monophosphate (cAMP) production in bovine pulmonary artery smooth muscle cells (BPASMCs). Treatment with AngII stimulates protein kinase C-ζ (PKC-ζ), nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, and PKC-α activities, and also inhibits isoproterenol induced increase in AC activity and cAMP production in the cells. Pertussis toxin pretreatment eliminates AngII caused inhibition of isoproterenol induced increase in AC activity without a discernible change in PKC-ζ, NADPH oxidase, and PKC-α activities. Treatment of the cells with AngII increases α2 isoform of Gi (Giα2) phosphorylation; while pretreatment with chemical and genetic inhibitors of PKC-ζ and NADPH oxidase attenuate AngII induced increase in PKC-α activity and Giα2 phosphorylation, and also reverse AngII caused inhibition of isoproterenol induced increase in AC activity. Pretreatment of the cells with chemical and genetic inhibitors of PKC-α attenuate AngII induced increase in Giα2 phosphorylation and inhibits isoproterenol induced increase in AC activity without a discernible change in PKC-ζ and NADPH oxidase activities. Overall, PKCζ-NADPH oxidase-PKCα signaling axis plays a crucial role in Giα2 phosphorylation resulting in AngII-mediated inhibition of isoproterenol induced increase in AC activity in BPASMCs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。