LncRNA TRPM2-AS promotes endometrial carcinoma progression and angiogenesis via targeting miR-497-5p/SPP1 axis

LncRNA TRPM2-AS 通过靶向 miR-497-5p/SPP1 轴促进子宫内膜癌进展和血管生成

阅读:6
作者:Hanbo Ma, Fengyun Weng, Xiaowen Tong, Huaifang Li, Yinan Yao, Jiangjing Yuan

Background

Anti-angiogenic therapy has become one of the effective treatment

Conclusion

The depletion of TRPM2-AS inhibits the oncogenicity of EC by targeting the miR-497-5p/SPP1 axis. This study offers a better understanding of TRPM2-AS's role in regulating angiogenesis and provides a novel target for EC treatment.

Methods

We screened the differently expressed lncRNAs that were highly associated with poor prognosis and angiogenesis of EC by bioinformatics analysis, and constructed a ceRNA network based on the prognostic lncRNAs. The subcellular localization of TRPM2-AS was determined by fluorescence in situ hybridization (FISH) and nuclear cytoplasmic fractionation assay. CCK-8, EdU, transwell, western blot, qRT-PCR and endothelial tube formation assay were used to evaluate the effects of TRPM2-AS on the proliferation, invasion, migration of EC cells and angiogenesis. The targeted microRNA (miRNA) of TRPM2-AS was predicted by bioinformatic methods. The interaction between TRPM2-AS and miR497-5p, miR497-5p and SPP1 were analyzed by RNA immunoprecipitation and dual-luciferase reporter assay. A subcutaneous tumor model was used to explore TRPM2-AS's function in vivo. CIBERSORT was used to analyze the correlation between TRPM2-AS and immune cell immersion in EC.

Results

We found that the expression of TRPM2-AS and SPP1 was aberrantly upregulated, while miR-497-5p expression was significantly downregulated in EC tissues and cells. TRPM2-AS was closely correlated with the angiogenesis and poor prognosis in EC patients. Mechanistically, TRPM2-AS could sponge miR-497-5p to release SPP1, thus promoting the proliferation, invasion and migration of EC cells and angiogenesis of HUVECs. Knockdown of TRPM2-AS in xenograft mouse model inhibited tumor proliferation and angiogenesis in vivo. In addition, TRPM2-AS plays a vital role in regulating the tumor immune microenvironment of EC, overexpression of TRPM2-AS in EC cells stimulated the polarization of M2 macrophages and angiogenesis through secreting SPP1 enriched exosomes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。