WWP1 knockout in mice exacerbates obesity-related phenotypes in white adipose tissue but improves whole-body glucose metabolism

小鼠中 WWP1 基因敲除会加剧白色脂肪组织中肥胖相关表型,但会改善全身葡萄糖代谢

阅读:6
作者:Shunsuke Hoshino, Masaki Kobayashi, Ryoma Tagawa, Ryutaro Konno, Takuro Abe, Kazuhiro Furuya, Kumi Miura, Hiroki Wakasawa, Naoyuki Okita, Yuka Sudo, Yuhei Mizunoe, Yoshimi Nakagawa, Takeshi Nakamura, Hiroshi Kawabe, Yoshikazu Higami

Abstract

White adipose tissue (WAT) is important for maintenance of homeostasis, because it stores energy and secretes adipokines. The WAT of obese people demonstrates mitochondrial dysfunction, accompanied by oxidative stress, which leads to insulin resistance. WW domain-containing E3 ubiquitin protein ligase 1 (WWP1) is a member of the HECT-type E3 family of ubiquitin ligases and is associated with several diseases. Recently, we demonstrated that WWP1 is induced specifically in the WAT of obese mice, where it protects against oxidative stress. Here, we investigated the function of WWP1 in WAT of obese mice by analyzing the phenotype of Wwp1 knockout (KO) mice fed a high-fat diet. The levels of oxidative stress markers were higher in obese WAT from Wwp1 KO mice. Moreover, Wwp1 KO mice had lower activity of citrate synthase, a mitochondrial enzyme. We also measured AKT phosphorylation in obese WAT and found lower levels in Wwp1 KO mice. However, plasma insulin level was low and glucose level was unchanged in obese Wwp1 KO mice. Moreover, both glucose tolerance test and insulin tolerance test were improved in obese Wwp1 KO mice. These findings indicate that WWP1 participates in the antioxidative response and mitochondrial function in WAT, but knockdown of WWP1 improves whole-body glucose metabolism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。