Modeling and Predicting the Activities of Trans-Acting Splicing Factors with Machine Learning

使用机器学习建模和预测反式剪接因子的活性

阅读:4
作者:Miaowei Mao, Yue Hu, Yun Yang, Yajie Qian, Huanhuan Wei, Wei Fan, Yi Yang, Xiaoling Li, Zefeng Wang

Abstract

Alternative splicing (AS) is generally regulated by trans-splicing factors that specifically bind to cis-elements in pre-mRNAs. The human genome encodes ∼1,500 RNA binding proteins (RBPs) that potentially regulate AS, yet their functions remain largely unknown. To explore their potential activities, we fused the putative functional domains of RBPs to a sequence-specific RNA-binding domain and systemically analyzed how these engineered factors affect splicing. We discovered that ∼80% of low-complexity domains in endogenous RBPs displayed distinct context-dependent activities in regulating splicing, indicating that AS is under more extensive regulation than previously expected. We developed a machine learning approach to classify and predict the activities of RBPs based on their sequence compositions and further validated this model using endogenous RBPs and synthetic polypeptides. These results represent a systematic inspection, modeling, prediction, and validation of how RBP sequences affect their activities in controlling splicing, paving the way for de novo engineering of artificial splicing factors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。