Responsive manganese-based nanoplatform amplifying cGAS-STING activation for immunotherapy

响应性锰基纳米平台可增强 cGAS-STING 活性,用于免疫治疗

阅读:4
作者:Qingbin He, Runxiao Zheng, Junchi Ma, Luyang Zhao, Yafang Shi, Jianfeng Qiu

Background

The activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase-stimulator of interferon genes (cGAS-STING) signaling pathway has attracted great attention for its ability to up-regulate innate immune response and thus enhance cancer immunotherapy. However, many STING agonists limit the further advancement of immunotherapy due to weak tumor responsiveness or low activation efficiency. The responsive and effective activation of cGAS-STING signaling in tumors is a highly challenging process.

Conclusions

This adopted open source and reduce expenditure strategy to effectively generate more ROS and Mn2+ to responsively activate cGAS-STING signaling pathway, providing a new strategy for improving immunotherapy.

Methods

In this study, a manganese-based nanoplatform (MPCZ NPs) was constructed that could responsively and efficiently generate more manganese ions (Mn2+) and reactive oxygen species (ROS) to activate cGAS-STING signaling pathway. Briefly, manganese dioxide (MnO2) was loaded with zinc protoporphyrin IX (ZPP) molecule and coated by polydopamine (PDA) embedded with NH4HCO3 to obtain MPCZ NPs. Additionally, MPCZ NPs were evaluated in vitro and in vivo for their antitumor effects by methyl thiazolyl tetrazolium (MTT) assay and TUNEL assays, respectively.

Results

In this system, tumor responsiveness was achieved by exogenous (laser irradiation) and endogenous (high levels GSH) stimulation, which triggered the collapse or degradation of PDA and MnO2. Moreover, the release of Mn2+ augmented the cGAS-STING signaling pathway and enhanced the conversion of hydrogen peroxide (H2O2) to hydroxyl radical (·OH) under NIR laser irradiation. Furthermore, the release of ZPP and the elimination of GSH by MPCZ NPs inhibited HO-1 activity and prevented ROS consumption, respectively. Conclusions: This adopted open source and reduce expenditure strategy to effectively generate more ROS and Mn2+ to responsively activate cGAS-STING signaling pathway, providing a new strategy for improving immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。