Notch signaling is activated in knee-innervating dorsal root ganglia in experimental models of osteoarthritis joint pain

在骨关节炎关节痛的实验模型中,膝关节支配的背根神经节中的 Notch 信号被激活

阅读:9
作者:Lai Wang, Shingo Ishihara, Jun Li, Rachel E Miller, Anne-Marie Malfait

Background

We aimed to explore activation of the Notch signaling pathway in knee-innervating lumbar dorsal root ganglia (DRG) in the course of experimental osteoarthritis (OA) in mice, and its role in knee hyperalgesia.

Conclusions

These findings suggest a synergistic effect of Notch signaling with TLR4 in promoting CCL2 production and mediating knee hyperalgesia. Notch signaling is activated in knee-innervating lumbar DRG in mice with experimental OA, and is involved in mediating knee hyperalgesia. The pathway may therefore be explored as a target for alleviating OA pain.

Methods

Cultured DRG cells were stimulated with the TLR4 agonist, lipopolysaccharide (LPS). Notch signaling in the cells was either inhibited with the γ-secretase inhibitor, DAPT, or with soluble Jagged1, or activated through immobilized Jagged1. CCL2 production was analyzed at mRNA and protein levels. In in vivo experiments, knee hyperalgesia was induced in naïve mice through intra-articular (IA) injection of LPS. The effect of inhibiting Notch signaling was examined by pre-injecting DAPT one hour before LPS. OA was induced through surgical destabilization of the medial meniscus (DMM) in male C57BL/6 mice. Gene expression in DRG was analyzed by qRT-PCR and RNAscope in situ hybridization. Activated Notch protein (NICD) expression in DRG was evaluated by ELISA and immunofluorescence staining. DAPT was injected IA 12 weeks post DMM to inhibit Notch signaling, followed by assessing knee hyperalgesia and CCL2 expression in the DRG.

Results

In DRG cell cultures, LPS increased NICD in neuronal cells. Inhibition of Notch signaling with either DAPT or soluble Jagged1 attenuated LPS-induced increases of Ccl2 mRNA and CCL2 protein. Conversely, activating Notch signaling with immobilized Jagged1 enhanced these LPS effects. In vivo, IA injection of LPS increased expression of Notch genes and NICD in the DRG. Pre-injection of DAPT prior to LPS alleviated LPS-induced knee hyperalgesia, and decreased LPS-induced CCL2 expression in the DRG. Notch signaling genes were differentially expressed in the DRG from late-stage experimental OA. Notch1, Hes1, and NICD were increased in the neuronal cell bodies in DRG after DMM surgery. IA administration of DAPT alleviated knee hyperalgesia post DMM, and decreased CCL2 expression in the DRG. Conclusions: These findings suggest a synergistic effect of Notch signaling with TLR4 in promoting CCL2 production and mediating knee hyperalgesia. Notch signaling is activated in knee-innervating lumbar DRG in mice with experimental OA, and is involved in mediating knee hyperalgesia. The pathway may therefore be explored as a target for alleviating OA pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。