Rational affinity maturation of anti-amyloid antibodies with high conformational and sequence specificity

具有高构象和序列特异性的抗淀粉样蛋白抗体的合理亲和力成熟

阅读:10
作者:Alec A Desai, Matthew D Smith, Yulei Zhang, Emily K Makowski, Julia E Gerson, Edward Ionescu, Charles G Starr, Jennifer M Zupancic, Shannon J Moore, Alexandra B Sutter, Magdalena I Ivanova, Geoffrey G Murphy, Henry L Paulson, Peter M Tessier

Abstract

The aggregation of amyloidogenic polypeptides is strongly linked to several neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Conformational antibodies that selectively recognize protein aggregates are leading therapeutic agents for selectively neutralizing toxic aggregates, diagnostic and imaging agents for detecting disease, and biomedical reagents for elucidating disease mechanisms. Despite their importance, it is challenging to generate high-quality conformational antibodies in a systematic and site-specific manner due to the properties of protein aggregates (hydrophobic, multivalent, and heterogeneous) and limitations of immunization (uncontrolled antigen presentation and immunodominant epitopes). Toward addressing these challenges, we have developed a systematic directed evolution procedure for affinity maturing antibodies against Alzheimer's Aβ fibrils and selecting variants with strict conformational and sequence specificity. We first designed a library based on a lead conformational antibody by sampling combinations of amino acids in the antigen-binding site predicted to mediate high antibody specificity. Next, we displayed this library on the surface of yeast, sorted it against Aβ42 aggregates, and identified promising clones using deep sequencing. The resulting antibodies displayed similar or higher affinities than clinical-stage Aβ antibodies (aducanumab and crenezumab). Moreover, the affinity-matured antibodies retained high conformational specificity for Aβ aggregates, as observed for aducanumab and unlike crenezumab. Notably, the affinity-maturated antibodies displayed extremely low levels of nonspecific interactions, as observed for crenezumab and unlike aducanumab. We expect that our systematic methods for generating antibodies with unique combinations of desirable properties will improve the generation of high-quality conformational antibodies specific for diverse types of aggregated conformers.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。