Integrated analysis based on vesicle trafficking-related genes identifying CNIH4 as a novel therapeutic target for glioma

基于囊泡运输相关基因的综合分析确定 CNIH4 为胶质瘤的新治疗靶点

阅读:12
作者:Zhen Fang, Fangen Kong, Jia Zeng, Zichen Zhang, Yunzhi Wang, Yiping Wang, Jiajia Duan, Lei Chen, Jikai Wang, Fei Liu

Background

Vesicle trafficking is a highly important process in numerous human diseases, especially in the central nervous system dysfunctions. However, as a key component of vesicle trafficking-related genes (VRGs), Cornichon family AMPA receptor auxiliary protein 4 (CNIH4) has not been systematically elucidated in glioma so far.

Conclusion

Our study identified CNIH4 as a potential VRG that regulates tumor stemness, microenvironment immunity, and chemotherapy sensitivity. It may serve as a novel prognostic factor and a promising target against glioma therapy.

Methods

Differentially expressed VRGs were selected using molecular signatures database (MSigDB), The Cancer Genome Atlas (TCGA), and Genotype-Tissue Expression (GTEx) mRNA expression profiles. Further exploration of CNIH4 was determined using LASSO-Cox regression algorithms. Then Kaplan-Meier (K-M) plotter, receiver operating characteristic (ROC) curves, and multivariate Cox regression analyses were utilized to assess the independent significance of CNIH4 in the CGGA validation cohort. Functional exploration was performed with Gene Set Enrichment Analysis (GSEA) and then verified using a series of functional experiments in glioma cells. Finally, the consensus clustering algorithm was applied to identify clusters in glioma samples. After that, differences in prognosis, the tumor immune microenvironment (TIME), and therapy response were evaluated between clusters.

Results

CNIH4 was shown to be overexpressed in malignant glioma variants and was frequently observed in GCSs and TMZ-resistant cell lines. Higher CNIH4 levels were significantly related to poor outcomes and positively correlated with adverse clinicopathological characteristics. Survival analyses revealed CNIH4 as an independent risk factor that outperformed traditional measures. Enrichment analysis indicated that overactive CNIH4 significantly gathered in stem cell processes. Furthermore, functional assays of silencing CNIH4 expression suppressed stem cell-like properties in vitro and inhibited tumorigenicity in vivo. Finally, the CNIH4-enriched subgroup negatively modulated immunotherapeutic response and reflected lower chemotherapy sensitivity for glioma patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。