MicroRNA-155 suppressed cholesterol-induced matrix degradation, pyroptosis and apoptosis by targeting RORα in nucleus pulposus cells

MicroRNA-155 通过靶向髓核细胞中的 RORα 抑制胆固醇诱导的基质降解、细胞焦亡和细胞凋亡

阅读:6
作者:Tianyu Qin, Jiansen Yan, Shuangxing Li, Xiaolin Lin, Jiajun Wu, Zhengqi Huang, Chao Zhang, Yangyang Zhang, Zhihuai Deng, Dong Xiao, Song Jin, Yin Xiao, Kang Xu, Wei Ye

Abstract

Intervertebral disc degeneration (IDD) is associated with low back pain, yet its inherent mechanism remains obscure. Hypercholesteremia was regarded as a risk factor for IDD, and our previous study showed that cholesterol accumulation could elicit matrix degradation in the nucleus pulposus (NP). MicroRNA-155 (miR-155) was substantiated as protective in IDD, but its role in cholesterol-induced IDD was unclear. The present study investigated whether miR-155 could mediate cholesterol-related IDD and its internal mechanisms. In vivo experiments revealed high-fat diet-induced hypercholesteremia in wild-type (WT) mice along with the occurrence of IDD, whereas Rm155LG transgenic mice showed milder NP degeneration, as evidenced by Saffron O-fast green (SF) staining and immunohistochemistry (IHC). Meanwhile, IHC showed that NLRP3 and Bax expression was also suppressed in Rm155LG mice. In vitro studies using Western blotting (WB) and immunofluorescence (IF) confirmed that the miR-155 mimic could alleviate cholesterol-induced matrix degradation, apoptosis and pyroptosis in NP. Moreover, RORα was upregulated in severely degenerated NP compared to mild IDD. It was also noted that RORα was suppressed in Rm155LG mice. In this study, we demonstrated that miR-155 could target RORα and that inhibition of RORα could prevent cholesterol-induced matrix degradation, apoptosis, and pyroptosis in NP, indicating the protective effect of miR-155 in cholesterol-induced IDD by targeting RORα.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。