Plastid retrograde regulation of miRNA expression in response to light stress

光胁迫下质体逆向调控 miRNA 表达

阅读:7
作者:Anna Barczak-Brzyżek, Grzegorz Brzyżek, Marek Koter, Ewa Siedlecka, Piotr Gawroński, Marcin Filipecki

Background

MicroRNAs (miRNAs) are a class of endogenous noncoding RNAs that play a pivotal role in the regulation of plant development and responses to the surrounding environment. Despite the efforts made to elucidate their function in the adaptation of plants to many abiotic and biotic stresses, their role in high light (HL) stress is still vague. HL stress often arises upon plant exposure to full sunlight. Subsequent changes in nuclear gene expression are triggered by chloroplast-derived retrograde signals.

Conclusions

We show that light stress triggers changes in miRNA expression. This stress response may be regulated by reactive oxygen species (ROS)-related signaling. In conclusion, our results link ROS action to miRNA biogenesis, suggesting its contribution to inconsistent pri- and mature miRNA dynamics.

Results

In this study, we show that HL is involved in miRNA-dependent regulation in Arabidopsis thaliana rosettes. Microtranscriptomic screening revealed a limited number of miRNAs reacting to HL. To explain the miRNA regulation mechanisms at the different biogenesis stages, chemical and genetic approaches were applied. First, we tested the possible role of plastoquinone (PQ) redox changes using photosynthetic electron transport chain inhibitors. The results suggest that increased primary transcript abundance (pri-miRNAs) of HL-regulated miRNAs is dependent on signals upstream of PQ. This indicates that such signals may originate from photosystem II, which is the main singlet oxygen (1O2) source. Nevertheless, no changes in pri-miRNA expression upon a dark-light shift in the conditional fluorescent (flu) mutant producing 1O2 were observed when compared to wild-type plants. Thus, we explored the 1O2 signaling pathway, which is initiated independently in HL and is related to β-carotene oxidation and production of volatile derivatives, such as β-cyclocitral (β-CC). Pri-miRNA induction by β-CC, which is a component of this 1O2 pathway, as well as an altered response in the methylene blue sensitivity 1 (mbs1) mutant support the role of 1O2 signaling in miRNA regulation. Conclusions: We show that light stress triggers changes in miRNA expression. This stress response may be regulated by reactive oxygen species (ROS)-related signaling. In

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。