Three-Dimensional Representation of Motor Space in the Mouse Superior Colliculus

小鼠上丘运动空间的三维表示

阅读:16
作者:Jonathan J Wilson, Nicolas Alexandre, Caterina Trentin, Marco Tripodi

Abstract

From the act of exploring an environment to that of grasping a cup of tea, animals must put in register their motor acts with their surrounding space. In the motor domain, this is likely to be defined by a register of three-dimensional (3D) displacement vectors, whose recruitment allows motion in the direction of a target. One such spatially targeted action is seen in the head reorientation behavior of mice, yet the neural mechanisms underlying these 3D behaviors remain unknown. Here, by developing a head-mounted inertial sensor for studying 3D head rotations and combining it with electrophysiological recordings, we show that neurons in the mouse superior colliculus are either individually or conjunctively tuned to the three Eulerian components of head rotation. The average displacement vectors associated with motor-tuned colliculus neurons remain stable over time and are unaffected by changes in firing rate or the duration of spike trains. Finally, we show that the motor tuning of collicular neurons is largely independent from visual or landmark cues. By describing the 3D nature of motor tuning in the superior colliculus, we contribute to long-standing debate on the dimensionality of collicular motor decoding; furthermore, by providing an experimental paradigm for the study of the metric of motor tuning in mice, this study also paves the way to the genetic dissection of the circuits underlying spatially targeted motion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。