Multisite assessment of reproducibility in high-content cell migration imaging data

高内涵细胞迁移成像数据可重复性的多站点评估

阅读:5
作者:Jianjiang Hu #, Xavier Serra-Picamal #, Gert-Jan Bakker, Marleen Van Troys, Sabina Winograd-Katz, Nil Ege, Xiaowei Gong, Yuliia Didan, Inna Grosheva, Omer Polansky, Karima Bakkali, Evelien Van Hamme, Merijn van Erp, Manon Vullings, Felix Weiss, Jarama Clucas, Anna M Dowbaj, Erik Sahai, Christophe Am

Abstract

High-content image-based cell phenotyping provides fundamental insights into a broad variety of life science disciplines. Striving for accurate conclusions and meaningful impact demands high reproducibility standards, with particular relevance for high-quality open-access data sharing and meta-analysis. However, the sources and degree of biological and technical variability, and thus the reproducibility and usefulness of meta-analysis of results from live-cell microscopy, have not been systematically investigated. Here, using high-content data describing features of cell migration and morphology, we determine the sources of variability across different scales, including between laboratories, persons, experiments, technical repeats, cells, and time points. Significant technical variability occurred between laboratories and, to lesser extent, between persons, providing low value to direct meta-analysis on the data from different laboratories. However, batch effect removal markedly improved the possibility to combine image-based datasets of perturbation experiments. Thus, reproducible quantitative high-content cell image analysis of perturbation effects and meta-analysis depend on standardized procedures combined with batch correction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。