Upregulation of ATG4A promotes osteosarcoma cell epithelial-to-mesenchymal transition through the Notch signaling pathway

ATG4A 上调通过 Notch 信号通路促进骨肉瘤细胞上皮间质转化

阅读:6
作者:Han Su, Guoxing Zhu, Xiaoxu Rong, Yan Zhou, Ping Jiang, Peng Chen

Abstract

Osteosarcoma is a malignant tumor in children and adolescents. Previous studies showed that ATG4A is an autophagy-related gene involved in cancers. In this study, we aimed to identify the biological role of ATG4A in osteosarcoma. The expression levels of ATG4A were analyzed in osteosarcoma tissues by using reverse transcription-quantitative polymerase chain reaction (qRT-PCR) and western blotting. ATG4A was knocked-down or overexpressed in SAOS2 and HOS cell lines by transfection. Cell counting kit-8 (CCK-8) and clone formation assay were used to assess the effects of ATG4A on cell proliferation. Wound healing and Transwell assays were performed to evaluate the effects of ATG4A on cell migration and invasion, respectively. Epithelial-mesenchymal transition (EMT) markers and Notch signaling pathway targeting molecules were examined by western blotting. The results indicated that ATG4A was up-regulated in osteosarcoma tissues. In SAOS2 cells, knockdown of ATG4A inhibited the proliferation, migration and invasion, up-regulated the expression of E-cadherin and down-regulated the expression of vimentin, Notch1 and Hes1. In HOS cells, overexpression of ATG4A promoted the proliferation, migration and invasion, up-regulated the expression of vimentin, Notch1 and Hes1 and down-regulated the expression of E-cadherin. In conclusion, these findings demonstrate that ATG4A is up-regulated in osteosarcoma tissues. In osteosarcoma cells, ATG4A promotes the EMT process partly by the Notch signaling pathway. These results suggest that ATG4A might represent a potential therapeutic target for patients with osteosarcoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。