ApoE4 (Δ272-299) induces mitochondrial-associated membrane formation and mitochondrial impairment by enhancing GRP75-modulated mitochondrial calcium overload in neuron

ApoE4 (Δ272-299) 通过增强 GRP75 调节的神经元线粒体钙超载来诱导线粒体相关膜形成和线粒体损伤

阅读:5
作者:Tao Liang #, Weijian Hang #, Jiehui Chen, Yue Wu, Bin Wen, Kai Xu, Bingbing Ding, Juan Chen

Background

Apolipoprotein E4 (apoE4) is a major genetic risk factor of Alzheimer's disease. Its C-terminal-truncated apoE4 (Δ272-299) has neurotoxicity by affecting mitochondrial respiratory function. However, the molecular mechanism(s) underlying the action of apoE4 (Δ272-299) in mitochondrial function remain poorly understood.

Conclusions

ApoE4 (Δ272-299) significantly impaired neuron mitochondrial function by triggering ER stress, up-regulating GRP75 expression to increase MAM formation, and mitochondrial calcium overload. Our findings may provide new insights into the neurotoxicity of apoE4 (Δ272-299) against mitochondrial function and uncover new therapeutic targets for the intervention of Alzheimer's disease.

Methods

The impact of neuronal apoE4 (Δ272-299) expression on ER stress, mitochondrial-associated membrane (MAM) formation, GRP75, calcium transport and mitochondrial impairment was determined in vivo and in vitro. Furthermore, the importance of ER stress or GRP75 activity in the apoE4 (Δ272-299)-promoted mitochondrial dysfunction in neuron was investigated.

Results

Neuronal apoE4 (Δ272-299) expression induced mitochondrial impairment by inducing ER stress and mitochondrial-associated membrane (MAM) formation in vivo and in vitro. Furthermore, apoE4 (Δ272-299) expression promoted GRP75 expression, mitochondrial dysfunction and calcium transport into the mitochondria in neuron, which were significantly mitigated by treatment with PBA (an inhibitor of ER stress), MKT077 (a specific GRP75 inhibitor) or GRP75 silencing. Conclusions: ApoE4 (Δ272-299) significantly impaired neuron mitochondrial function by triggering ER stress, up-regulating GRP75 expression to increase MAM formation, and mitochondrial calcium overload. Our findings may provide new insights into the neurotoxicity of apoE4 (Δ272-299) against mitochondrial function and uncover new therapeutic targets for the intervention of Alzheimer's disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。