Quantitative threefold allele-specific PCR (QuanTAS-PCR) for highly sensitive JAK2 V617F mutant allele detection

定量三重等位基因特异性 PCR (QuanTAS-PCR) 可实现高灵敏度的 JAK2 V617F 突变等位基因检测

阅读:4
作者:Giada V Zapparoli, Robert N Jorissen, Chelsee A Hewitt, Michelle McBean, David A Westerman, Alexander Dobrovic

Background

The JAK2 V617F mutation is the most frequent somatic change in myeloproliferative neoplasms, making it an important tumour-specific marker for diagnostic purposes and for the detection of minimal residual disease. Sensitive quantitative assays are required for both applications, particularly for the monitoring of minimal residual disease, which requires not only high sensitivity but also very high specificity.

Conclusions

QuanTAS-PCR is a simple, cost-efficient, closed-tube method for JAK2 V617F mutation quantification that can detect very low levels of the mutant allele, thus enabling analysis of minimal residual disease. The approach can be extended to the detection of other recurrent single nucleotide somatic changes in cancer.

Methods

We developed a highly sensitive probe-free quantitative mutant-allele detection method, Quantitative Threefold Allele-Specific PCR (QuanTAS-PCR), that is performed in a closed-tube system, thus eliminating the manipulation of PCR products. QuantTAS-PCR uses a threefold approach to ensure allele-specific amplification of the mutant sequence: (i) a mutant allele-specific primer, (ii) a 3'dideoxy blocker to suppress false-positive amplification from the wild-type template and (iii) a PCR specificity enhancer, also to suppress false-positive amplification from the wild-type template. Mutant alleles were quantified relative to exon 9 of JAK2.

Results

We showed that the addition of the 3'dideoxy blocker suppressed but did not eliminate false-positive amplification from the wild-type template. However, the addition of the PCR specificity enhancer near eliminated false-positive amplification from the wild-type allele. Further discrimination between true and false positives was enabled by using the quantification cycle (Cq) value of a single mutant template as a cut-off point, thus enabling robust distinction between true and false positives. As 10,000 JAK2 templates were used per replicate, the assay had a sensitivity of 1/10(-4) per replicate. Greater sensitivity could be reached by increasing the number of replicates analysed. Variation in replicates when low mutant-allele templates were present necessitated the use of a statistics-based approach to estimate the load of mutant JAK2 copies. QuanTAS-PCR showed comparable quantitative results when validated against a commercial assay. Conclusions: QuanTAS-PCR is a simple, cost-efficient, closed-tube method for JAK2 V617F mutation quantification that can detect very low levels of the mutant allele, thus enabling analysis of minimal residual disease. The approach can be extended to the detection of other recurrent single nucleotide somatic changes in cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。