Epidermal growth factor receptor variant type III markedly accelerates angiogenesis and tumor growth via inducing c-myc mediated angiopoietin-like 4 expression in malignant glioma

表皮生长因子受体变体 III 型通过诱导恶性胶质瘤中的 c-myc 介导的血管生成素样 4 表达显著加速血管生成和肿瘤生长

阅读:5
作者:Yasufumi Katanasaka, Yasuo Kodera, Yuka Kitamura, Tatsuya Morimoto, Tomohide Tamura, Fumiaki Koizumi

Background

Expression of the constitutively activated mutant EGFR variant III (EGFRvIII), the most common mutation in glioblastoma multiforme (GBMs), has been clinically correlated with tumor proliferation, invasion, and angiogenesis. In this study, we examined the role of EGFRvIII on the tumor microenvironment, especially on angiogenesis.

Conclusions

In summary, we demonstrated that EGFRvIII induces Angptl4 expression through the ERK/c-Myc pathway and promotes tumor angiogenesis in malignant gliomas.

Methods

To study the role of EGFRvIII in tumor angiogenesis, we prepared LN229 glioblastoma transfected with enhanced green fluorescent protein (EGFP), wild-type EGFR, or EGFRvIII (LN229-WT or -vIII), and examined tumor growth and microvessel density in the tumors. Additionally, the potential angiogenic factors were identified by real-time PCR analysis, and the functions in LN229-vIII cells were examined.

Results

LN229-vIII cells showed more aggressive tumor growth and higher vascularity as compared to LN229-WT cells in vivo, although there was no significant difference in the cell growth rates in vitro. We next investigated the expression of 60 angiogenesis-related factors to clarify the mechanisms underlying the difference in vascularity between tumor xenografts of LN229-vIII and LN229-WT. We found that the mRNA and protein expressions of angiopoietin-like 4 (Angptl4), a secreted protein involved in angiogenesis and metabolism regulation, were significantly induced by EGFRvIII overexpression, both in vitro and in vivo. Constitutive knockdown of Angptl4 in LN229-vIII using shRNA significantly decreased the microvessel density in the tumor xenografts and suppressed tumor growth. To clarify the regulatory mechanisms of Angptl4 by EGFRvIII, we analyzed the signaling pathways and transcription factors by pharmacological inhibition and RNA interference. U0126, an ERK signal inhibitor dramatically suppressed Angptl4 expression. The transcription factor c-Myc, which is regulated by ERK, was activated in the LN229-vIII cells and knockdown of c-Myc using siRNA also attenuated Angptl4 expression in the LN229-vIII cells. Furthermore, chromatin immunoprecipitation (ChIP) assay revealed increased recruitment of c-Myc to the promoter region of Angptl4 in the LN229-vIII cells. Conclusions: In summary, we demonstrated that EGFRvIII induces Angptl4 expression through the ERK/c-Myc pathway and promotes tumor angiogenesis in malignant gliomas.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。