SREBF2 triggers endoplasmic reticulum stress and Bax dysregulation to promote lipopolysaccharide-induced endothelial cell injury

SREBF2 触发内质网应激和 Bax 失调,促进脂多糖诱导的内皮细胞损伤

阅读:7
作者:Gang Dong #, Xiaoquan Huang #, Ling Wu, Siyu Jiang, Qintian Tan, Shiyao Chen

Abstract

An increased lipopolysaccharide (LPS) level in patients with cirrhosis induced the dysregulation of sterol regulatory element-binding transcription factor 2 (SREBF2), which participated in the modulation of tumor inflammatory microenvironment. However, the role of SREBF2 in the LPS-induced injury of portal vein endothelium was scarcely reported. This study aimed to investigate the effects of SREBF2 on the LPS-induced injury to endothelial cells (ECs) in vitro and in vivo and explore the underlying mechanism. In this study, we found that LPS increased SREBF2 expression through activating the TLR4/JNK/c-Jun pathway and suppressed UBE2I-mediated SREBF2 sumoylation to enhance its transcriptional activity. The dysregulation of SREBF2 induced ER stress by increasing the intracellular cholesterol level and facilitated Bax expression to cause additional damage to LPS-induced ECs. As a potential intervention, miR590-3p negatively regulated SREBF2 expression and upregulated UBE2I expression by targeting TLR4, thus alleviating LPS-induced injury. These results suggest that LPS-induced SREBF2 triggered ER stress and promoted Bax expression to injure ECs, which was reversed by miR590-3p. The mechanisms of SREBF2 mediated LPS-induced endothelial injury of portal vein, which might be the therapeutic target for PVT development in cirrhosis patients. 1. LPS promoted SREBF2 expression by activating the TLR4/JNK/c-Jun pathway and suppressed UBE2I-mediated SREBF2 sumoylation to upregulate SREBF2 transcriptional activity 2. SREBF2-mediated ER stress and Bax expression involved in LPS-induced EC injury 3. miR590-3p decreased SREBF2 expression by targeting TLR4 and mitigated LPS-induced EC injury.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。