Single cell analysis reveals human cytomegalovirus drives latently infected cells towards an anergic-like monocyte state

单细胞分析揭示人类巨细胞病毒促使潜在感染的细胞走向无能样单核细胞状态

阅读:5
作者:Miri Shnayder, Aharon Nachshon, Batsheva Rozman, Biana Bernshtein, Michael Lavi, Noam Fein, Emma Poole, Selmir Avdic, Emily Blyth, David Gottlieb, Allison Abendroth, Barry Slobedman, John Sinclair, Noam Stern-Ginossar, Michal Schwartz

Abstract

Human cytomegalovirus (HCMV) causes a lifelong infection through establishment of latency. Although reactivation from latency can cause life-threatening disease, our molecular understanding of HCMV latency is incomplete. Here we use single cell RNA-seq analysis to characterize latency in monocytes and hematopoietic stem and progenitor cells (HSPCs). In monocytes, we identify host cell surface markers that enable enrichment of latent cells harboring higher viral transcript levels, which can reactivate more efficiently, and are characterized by reduced intrinsic immune response that is important for viral gene expression. Significantly, in latent HSPCs, viral transcripts could be detected only in monocyte progenitors and were also associated with reduced immune-response. Overall, our work indicates that regardless of the developmental stage in which HCMV infects, HCMV drives hematopoietic cells towards a weaker immune-responsive monocyte state and that this anergic-like state is crucial for the virus ability to express its transcripts and to eventually reactivate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。