Dopamine D(2) receptor-mediated modulation of adenosine A(2A) receptor agonist binding within the A(2A)R/D(2)R oligomer framework

多巴胺D(2)受体介导的腺苷A(2A)受体激动剂在A(2A)R/D(2)R寡聚体框架内的结合调节

阅读:5
作者:Víctor Fernández-Dueñas, Maricel Gómez-Soler, Xavier Morató, Fabiana Núñez, Arijit Das, T Santhosh Kumar, Serge Jaumà, Kenneth A Jacobson, Francisco Ciruela

Abstract

The molecular interaction between adenosine A2A and dopamine D2 receptors (A2ARs and D2Rs, respectively) within an oligomeric complex has been postulated to play a pivotal role in the adenosine-dopamine interplay in the central nervous system, in both normal and pathological conditions (e.g. Parkinson's disease). While the effects of A2AR challenge on D2R functioning have been largely studied, the reverse condition is still unexplored, a fact that might have impact in therapeutics. Here, we aimed to examine in a real-time mode the D2R-mediated allosteric modulation of A2AR binding when an A2AR/D2R oligomer is established. Thus, we synthesized fluorescent A2AR agonists and evaluated, by means of a flow cytometry homogeneous no-wash assay and a real-time fluorescence resonance energy transfer (FRET)-based approach, the effects on A2AR binding of distinct antiparkinsonian drugs in current clinical use (i.e. pramipexole, rotigotine and apomorphine). Our results provided evidence for the existence of a differential D2R-mediated negative allosteric modulation on A2AR agonist binding that was oligomer-formation dependent, and with apomorphine being the best antiparkinsonian drug attenuating A2AR agonist binding. Overall, the here-developed methods were found valid to explore the ability of drugs acting on D2Rs to modulate A2AR binding, thus serving to facilitate the preliminary selection of D2R-like candidate drugs in the management of Parkinson's disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。