Dynamics of polarization-tuned mirror symmetry breaking in a rotationally symmetric system

旋转对称系统中偏振调谐镜像对称破坏的动力学

阅读:6
作者:Yu Zhang #, Zhibin Li #, Zhen Che, Wang Zhang, Yusen Zhang, Ziqi Lin, Zhan Lv, Chunling Wu, Longwei Han, Jieyuan Tang, Wenguo Zhu, Yi Xiao, Huadan Zheng, Yongchun Zhong, Zhe Chen, Jianhui Yu

Abstract

Lateral momentum conservation is typically kept in a non-absorptive rotationally symmetric system through mirror symmetry via Noether's theorem when illuminated by a homogeneous light wave. Therefore, it is still very challenging to break the mirror symmetry and generate a lateral optical force (LOF) in the rotationally symmetric system. Here, we report a general dynamic action in the SO(2) rotationally symmetric system, originating from the polarization-tuned mirror symmetry breaking (MSB) of the light scattering. We demonstrate theoretically and experimentally that MSB can be generally applied to the SO(2) rotationally symmetric system and tuned sinusoidally by polarization orientation, leading to a highly tunable and highly efficient LOF (9.22 pN/mW/μm-2) perpendicular to the propagation direction. The proposed MSB mechanism and LOF not only complete the sets of MSB of light-matter interaction and non-conservative force only using a plane wave but also provide extra polarization manipulation freedom.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。