Constitutive androstane receptor weakens the induction of panaxytriol on CYP3A4 by repressing the activation of pregnane X receptor

组成型雄烷受体通过抑制孕烷 X 受体的激活来减弱人参炔三醇对 CYP3A4 的诱导

阅读:5
作者:Qingqing Hu, Na Yao, Jie Wu, Mingyi Liu, Fanglan Liu, Hong Zhang, Yuqing Xiong, Chunhua Xia

Abstract

Nuclear receptors pregnane X receptor (PXR; NR1I2) and constitutive androstane receptor (CAR; NR1I3) play a vital role in regulating CYP3A4. Our previous studies have demonstrated that panaxytriol (PXT) upregulates the expression of CYP3A4 via the PXR regulatory pathway. This study aimed to explore how CAR mediates the regulation of CYP3A4 in the presence of PXT using HepG2 cell, hCAR-overexpressing HepG2 cell and hCAR-silenced HepG2 cell models. In HepG2 cells, PXT induced the expression of CYP3A4 in a concentration-dependent manner (10-80 μM) and the high concentration of PXT (80 μM) upregulated the expression of CAR. The concentrations of PXT (10-40 μM) had no impact on the expression of CAR, but could significantly induce the expression of CYP2B6 target gene by activating CAR. The dual-luciferase reporter gene assay also showed that CAR-mediated CYP3A4 luciferase activity can be promoted by 80 μM of PXT (1.54-fold), while 5, 10, 20, and 40 μM of PXT had no influence on CAR-mediated CYP3A4 luciferase activity. In hCAR-overexpressing HepG2 cells, PXT concentrations (10-40 μM) that significantly induced PXR and CYP3A4 in HepG2 cells had no impact on the expression of CYP3A4, CAR and PXR, whereas a high concentration of PXT (80 µM) could weakly induce the mRNA and protein levels of CAR and CYP3A4. Moreover, the expression of PXR and CYP3A4 in hCAR-silenced HepG2 cells was markedly elevated compared with the blank control or with normal HepG2 cells treated with 10-80 μM of PXT. In conclusion, CAR significantly weakens the ability of PXT to induce CYP3A4 expression by repressing the activation of PXR. There may be a cross-talk mechanism between PXR and CAR on the regulation of CYP3A4 in the presence of PXT. Additionally, a high concentration of PXT (80 μM) induced CYP3A4 via the CAR regulatory pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。